# UVSQ INTUITION OF TACHNIQUE (44 Yellines Unitversité parity sacual Campus de Antes en Yellines Campus de Sant-Guentin-En-Yyelines Campus de Sant-Guentin-En-Yyelines

## SYSTÈMES NUMÉRIQUES

## TD1

Boolean logic

#### 1st exercise:

Here are some logic gate circuit problems: You can use NOT, AND and OR gates.

- Draw a logic circuit for (A + B).C.
- Draw a logic circuit for  $A + B.C + \overline{D}$ .
- Draw a logic circuit for A.B +  $\overline{A.C}$ .
- Draw a logic circuit for  $(A+B).(C+D).\overline{C}$ .

## 2<sup>nd</sup> exercise:

Here are some examples of Boolean algebra simplifications. Each line gives a form of the expression, and the rule or rules used to derive it from the previous one. Generally, there are several ways to reach the result.

- Simplify: C +  $\overline{B.C}$ :
- Simplify:  $\overline{AB}(\overline{A} + B)(\overline{B} + B)$ :
- Simplify:  $(A + C)(AD + A\overline{D}) + AC + C$ :
- Simplify:  $\overline{A}(A + B) + (B + AA)(A + \overline{B})$ :

<u>Note:</u> Here is the list of rules used for the Boolean expression simplifications. This is a fairly standard list you could find most anywhere, but we thought you needed an extra copy.

| The Idempotent Laws   | AA = A                                        |                        | A+A=A                                        |                    |
|-----------------------|-----------------------------------------------|------------------------|----------------------------------------------|--------------------|
| The Associative Laws  | (AB)C = A(BC)                                 |                        | (A+B)+C=A+(B+C)                              |                    |
| The Commutative Laws  | AB = BA                                       |                        | A+B=B+A                                      |                    |
| The Distributive Laws | A(B+C) = AB+AC                                |                        | A+BC = (A+B)(A+C)                            |                    |
| The Identity Laws     | AF = F                                        | AT = A                 | A+F=A                                        | A+T=T              |
| The Complement Laws   | $A\overline{A} = F$                           | $A + \overline{A} = T$ | $\overline{F} = T$                           | $\overline{T} = F$ |
| The Involution Law    | $\overline{\overline{A}} = A$                 |                        |                                              |                    |
| DeMorgan's Law        | $\overline{AB} = \overline{A} + \overline{B}$ |                        | $\overline{A+B} = \overline{A} \overline{B}$ |                    |

## **Boolean Algebra Practice Problems** (do not turn in):

Simplify each expression by algebraic manipulation. Try to recognize when it is appropriate to transform to the dual, simplify, and re-transform (e.g. no. 6). Try doing the problems before looking at the solutions which are at the end of this problem set.

| 1) a+0=                                                 | 14) y + yy =                                                          |
|---------------------------------------------------------|-----------------------------------------------------------------------|
| 2) $\bar{a} \cdot 0 =$                                  | 15) xy + xy =                                                         |
| 3) $a + \bar{a} = $                                     | $(x^2 + yx^2 = 16)$                                                   |
| <i>4)</i> $a + a =$                                     | (w + x + y + z)y =                                                    |
| 5) $a + ab = $                                          | (x+y)(x+y) =                                                          |
| 6) $a + ab = $                                          | [19] w + [w + (wx)] =                                                 |
| 7) $a(a+b) = $                                          | 20) x[x+(xy)] =                                                       |
| 8) $ab + ab = $                                         | $(\overline{x} + \overline{x}) = $                                    |
| 9) $(\bar{a} + \bar{b})(\bar{a} + b) = $                | (x+x) =                                                               |
| 10) a(a+b+c+) =                                         | (23)  w + (wxyz) =                                                    |
| For (11),(12), (13), $f(a,b,c) = a+b+c$                 | 24) $\overline{w} \cdot \overline{(wxyz)} = \underline{\hspace{1cm}}$ |
| 11) $f(a,b,ab) = $                                      | (25) xz + xy + zy =                                                   |
| 12) $f(a,b,\bar{a}\cdot\bar{b}) = $                     | _26) $(x+z)(x+y)(z+y) =$                                              |
| 13) $f[a,b,\overline{(ab)}] = \underline{\hspace{1cm}}$ | $(27) \ x + y + xyz = $                                               |

# **Problem 1:** Karnaugh Maps and Minimal Expressions

For each of the following Boolean expressions, give:

- i) The truth table,
- ii) The Karnaugh map,
- iii) The minimal sum of products expression. (Show groupings)
- iv) The minimal product of sums expression. (Show groupings)

1) 
$$(\overline{a} + b \cdot \overline{d}) \cdot (c \cdot b \cdot a + \overline{c} \cdot d)$$
  
2)  $(w + \overline{x})(z\overline{y} + x)$ 

### **\*Solutions:**

1) 
$$a+0=a$$

2) 
$$a \cdot 0 = 0$$

3) 
$$a + \bar{a} = 1$$

4) 
$$a + a = a$$

5) 
$$a + ab = a(1+b) = a$$

6) 
$$a + ab = (a + a)(a + b) = a + b$$

7) 
$$a(\overline{a} + b) = \overline{aa} + ab = ab$$

8) 
$$ab + ab = b(a + a) = b$$

9) 
$$(\bar{a} + \bar{b})(\bar{a} + b) = \bar{a}\bar{a} + \bar{a}b + \bar{b}\bar{a} + \bar{b}b = \bar{a} + \bar{a}b + \bar{a}\bar{b} = \bar{a}(1 + b + \bar{b}) = \bar{a}$$

10) 
$$a(a+b+c+...) = aa+ab+ac+... = a+ab+ac+... = a$$

11) 
$$f(a,b,ab) = a+b+ab = a+b$$

12) 
$$f(a, b, \overline{a} \cdot \overline{b}) = a + b + \overline{ab} = a + b + \overline{a} = 1$$

13) 
$$f[a,b,\overline{(ab)}] = a+b+\overline{(ab)} = a+b+\overline{a}+\overline{b}=1$$

$$14) \ y + y\overline{y} = y$$

15) 
$$xy + xy = x(y + y) = x$$

16) 
$$x + yx = x(1+y) = x$$

17) 
$$(w + x + y + z)y = y$$

18) 
$$(x+v)(x+v) = x$$

19) 
$$w + [w + (wx)] = w$$

20) 
$$x[x+(xy)] = x$$

21) 
$$\overline{(x+x)} = x$$

22) 
$$(x+x)=0$$

23) 
$$w + (wxyz) = w(1 + xyz) = w$$

24) 
$$\overline{w} \cdot \overline{(wxyz)} = \overline{w}(\overline{w} + \overline{x} + \overline{y} + \overline{z}) = \overline{w}$$

25) 
$$xz + xy + zy = xz + xy$$

26) 
$$(x+z)(\bar{x}+y)(z+y) = (x+z)(\bar{x}+y) = xy + \bar{x}z$$

27) 
$$x + y + xyz = x + y + z$$