SYSTÈMES NUMÉRIQUES INTIVORGITÉ PARIS-SACIAV INTIVORGITÉ PARIS-SACIAV INTIVORGITÉ PARIS-SACIAV INTIVORGITÉ PARIS-SACIAV SYSTÈMES NUMÉRIQUES TD2

Boolean logic

Exercice 1

- 1) Donnez la définition d'une donnée binaire?
- 2) Quelle est la particularité du code GRAY?
- 3) **Donnez**, sur cinq bits, le code binaire pur des nombres décimaux de 16 à 31.
- 4) **Convertissez** les nombres suivants en leur équivalent binaire puis en hexadécimal:
 - a) 26₁₀
 - b) 52₁₀
 - c) 104_{10}
- 5) **Codez** les nombres suivants en leur équivalent BCD en associant, à chaque octet créé, un bit de parité impaire (encadrez ou soulignez ces bits):
 - a) 74₁₀
 - b) 269₁₀
 - c) 2048₁₀
- 6) Les nombres suivants sont en code BCD sauf un seul. **Retrouvez** l'intrus et **donnez** l'équivalent en décimal des autres.
 - a) 1001011101010010_{BCD}
 - b) 0111011101111101_{BCD}
 - c) 000110000100_{BCD}
 - d) 010010010010_{BCD}
- 7) **Codez** en ASCII l'expression «Electronique 2010» (Attention aux minuscules, aux majuscules et aux espaces). **Associez** à chacun des caractères un bit de parité paire. **Donnez** les résultats en hexadécimal.
- 8) **Donnez**, sur 8 bits, la représentation en binaire signé de:
 - a) 26₁₀,
 - b) 67₁₀,
 - c) 32_{10} .
- 9) Réalisez les opérations suivantes (donnez les étapes de calcul)

$$(1100.1111.0011)_2 + (1111.1001)_2$$

$$(927)_{16} + (35)_{16}$$

(1111.1100)₂ - (1111)₂(Faites l'addition en utilisant le complément à 2)

Exercice 2 L'algèbre de Boole

Simplifiez les équations suivantes (en vous aidant des schémas à contacts ou Karnaugh) :

a.
$$S = a + 1 =$$

f.
$$S=d.1=$$

b.
$$S=a. a=$$

g.
$$S = d + 0 =$$

$$S=b. \overline{b}=$$

h.
$$S=c+\overline{c}=$$

d.
$$S=c+c=$$

$$S=g+g \cdot f=$$

e.
$$S=d.0=$$

$$S = g + \overline{g} \cdot f =$$

Exercice 3 L'usine de briques

Dans une usine de briques, on effectue un contrôle de qualité selon 4 critères :

- Poids p
- Longueur L
- Largeur I
- Hauteur h

Cela permet de classer les briques en trois catégories :

- Qualité A : le poids p et deux dimensions au moins sont correctes
- Qualité **B** : le poids **p** seul est incorrect, ou, le poids étant correct, deux dimensions au moins sont incorrectes.
- Qualité **C** : le poids **p** est incorrect ainsi qu'une ou plusieurs dimensions.

Travail à effectuer :

ETABLIR la table de vérité décrivant le fonctionnement du contrôle de qualité des briques.

DONNER à partir de cette table de vérité les fonctions logiques de **A**, **B** et **C**. **SIMPLIFIER** ces fonctions logiques.

DESSINER le logigramme.