

SEMAINE DE FORMATION DES FORMATEURS INITIÉE PAR L'UNIVERSITÉ PARIS SACLAY SUR

«L'INFORMATIQUE INDUSTRIELLE ET LES SYSTÈMES EMBARQUÉS».

28 octobre - 01 novembre 2024

Kamal MEGHRICHE
ISTY-UVSQ Université Paris-Saclay

Citations

"We are not waiting on any invention. It is here. It is now. It is almost genetic in its nature, in that each generation will become more digital than the preceding one".

Nicholas Negroponte, Chairman Emeritus, MIT Media Lab

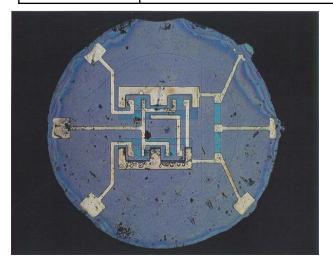
"You may not realize it, but you've lost your mind. We all have. In fact, we lose our minds all the time, often several times a day. We do this when we blindly outsource our thinking to technologies, experts, and rules".

Vikram Mansharamani, Harvard Business Review Press

Quelques interrogations

- C'est quoi un microprocesseur/microcontrôleur/API?
- Quels sont les critères de choix d'un processeur pour une application donnée?
- Comment programmer un microcontrôleur?
- Quels sont les différents types
 - de circuits mémoire (vive, morte, cache)?
 - d'interfaces E/S d'un microcontrôleur?
 - d'outils de développement ?
- Comment établir une communication avec un processeur?
 etc...

Contexte


Enseignement basé sur le cursus proposé aux élèves-ingénieurs de 1^{ère} année (niveau BAC+3) en Mécatronique de l'ISTY.

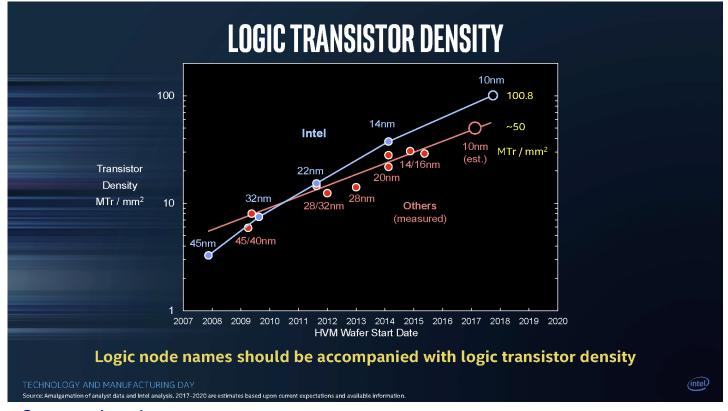
Bassin de recrutement:

- Cycle préparatoire intégré,
- BUT GIM/GMP/MP,
- BTS,

Evolution

Année	Technologie	Performance relative
1951	Tube à vide	1
1965	Transistor	35
1971	Circuit intégré	900
1995	VLSI	2 400 000
2013	ULSI	250 000 000 000

(L to R) Mazor, Faggin, Hoff, Shima



Mary Jackson, Katherine Johnson et Dorothy Vaughan les mathématiciennes noires de la NASA (must know), qui par leurs calculs, ont permis d'envoyer dans l'espace les premiers astronautes américains et aux USA d'atteindre la lune en premier.

• Loi de Moore : croissance exponentielle de la puissance de calcul.

Source Intel

Gordon Earle Moore (1929 – 2023)

15 novembre 1971 (2300 Transistors, 108 KHz, 200\$)

27 juillet 2006

Intel Xeon E5
4e trimestre 2011

28 août 2017 (4.30 GHz)

Intel Core i9 13900k Janvier 2023

AMD Full CPU Fusion 2014

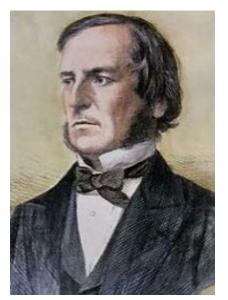
AMD Ryzen[™] 7 PRO 2700X 13 avril 2018

AMD Ryzen™ 9 9950X 15 août 2024

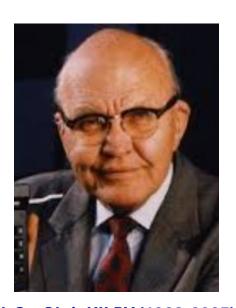
Juin 1956

Werner Buchholz inventa le terme "byte " ou octet comme unité de mesure de quantité d'information.

Werner Buchholz (1922 – 2019)


Un disque dur vous est vendu comme pouvant contenir 80 Giga-octets, or vous vous rendez compte qu'il ne peut contenir que 80 Milliards d'octets. D'où vient cette différence?

Abréviation	Préfixe décimal	Abréviation	Préfixe binaire	% >
Kilo (K)	10 ³	Kibi (Ki)	2 ¹⁰	2%
Mega (M)	10 ⁶	Mebi (Mi)	2 ²⁰	5%
Giga (G)	10 ⁹	Gibi (Gi)	2 ³⁰	7%
Tera (T)	10 ¹²	Tebi (Ti)	2 ⁴⁰	10%
Peta (P)	10 ¹⁵	Pebi (Pi)	2 ⁵⁰	13%
Exa (E)	10 ¹⁸	Exbi (Ei)	2 ⁶⁰	15%
Zetta (Z)	10 ²¹	Zebi (Zi)	2 ⁷⁰	18%
Yotta (Y)	10 ²⁴	Yobi (Yi)	2 ⁸⁰	21%



Prérequis

- Algèbre de Boole
- Circuits combinatoires
 - Circuits logiques
 - Circuits arithmétiques
- Circuits séquentiels
 - Bascules, registres, compteurs
- Circuits mémoire
 - · Capacité, temps d'accès
- Représentation de données
 - Décimal, binaire, virgule fixe, virgule flottante

Georges BOOLE (1815-1864)

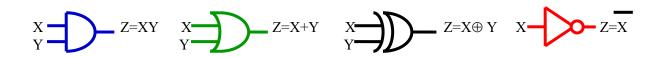
Jack St. Clair KILBY (1923-2005)

Prérequis

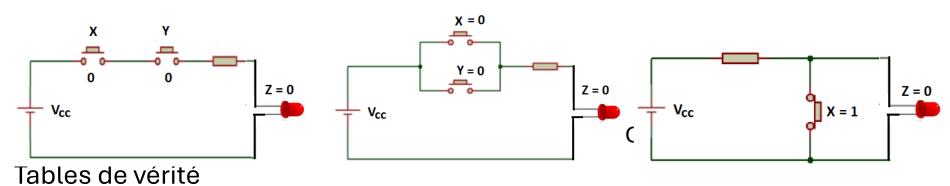
Systèmes de numérotation

Alphabet russe: H → (prononcé) N

 $\mathbf{B} \rightarrow \text{(prononcé) V} \qquad \mathbf{P} \rightarrow \text{(prononcé R)}$


Code ASCII: 0100 1000 (0x48)

0100 0010 (0x42)


0101 0000 (0x50)

Binaire	Sans signe	Signe & magnitude	Complément à 1	Complément à 2	Binaire	Sans signe	Signe & magnitude	Complément à 1	Complément à 2
<mark>0</mark> 000	0	+0	+0	+0	<mark>1</mark> 000	8	-0	-7	-8
<mark>0</mark> 001	1	+1	+1	+1	<mark>1</mark> 001	9	– 1	-6	- 7
<mark>0</mark> 010	2	+2	+2	+2	<mark>1</mark> 010	10	-2	-5	-6
<mark>0</mark> 011	3	+3	+3	+3	<mark>1</mark> 011	11	-3	-4	- 5
<mark>0</mark> 100	4	+4	+4	+4	<mark>1</mark> 100	12	-4	-3	-4
<mark>0</mark> 101	5	+5	+5	+5	<mark>1</mark> 101	13	-5	-2	-3
<mark>0</mark> 110	6	+6	+6	+6	<mark>1</mark> 110	14	-6	-1	-2
<mark>0</mark> 111	7	+7	+7	+7	<mark>1</mark> 111	15	-7	-0	-1

Fonctions logiques

Circuits équivalents:

INP	UTS	AND	OR	EXOR	INPUT	NOT
X	Υ	XY	X+Y	$X \oplus Y$	X	X
0	0	0	0	0	0	1
0	1	0	1	1	1	0
1	0	0	1	1		
1	1	1	1	0		

Le complément à 9

Si on vous donne une calculatrice similaire à celle ci-contre, Serait-il possible d'effectuer les soustractions suivantes:

a)
$$7-3 \rightarrow 7+6=13 \rightarrow 3+1=4$$

b)
$$9-1 \rightarrow 9+8=17 \rightarrow 7+1=8$$

c)
$$12-4 \rightarrow 12+95=107 \rightarrow 07+1=8$$

d)
$$15-12 \rightarrow 15+87=102 \rightarrow 02+1=3$$

Calculatrice particulière qui ne peut effectuer que l'addition

Le complément à 10

Si on vous donne une calculatrice similaire à celle ci-contre, Serait-il possible d'effectuer les soustractions suivantes?

a)
$$7 - 3$$

b)
$$9-1$$

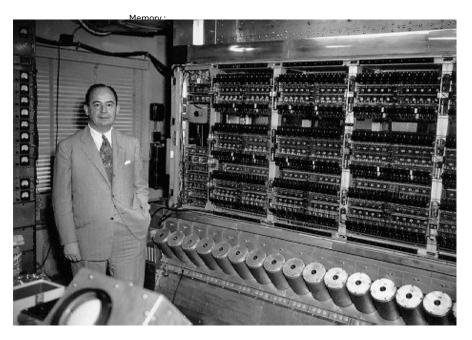
c)
$$12-4$$

$$\rightarrow$$
 7+7=14 \rightarrow 4

$$\rightarrow$$
 9 + 9 = 18 \rightarrow 8

$$\rightarrow$$
 12 + 96 = **1** 08 \rightarrow 8

$$\rightarrow$$
 15 + 88 = 103 \rightarrow 03

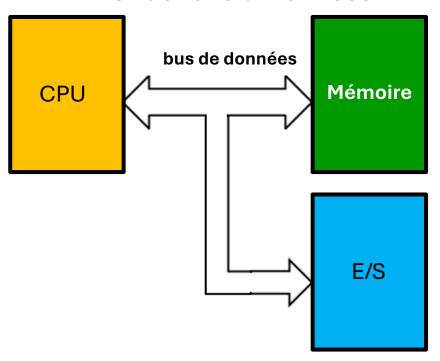


Calculatrice particulière qui ne peut effectuer que l'addition

Architecture CPU

Von Neumann (Princeton)

un seul bus relie toutes les unités



Von Neumann avec son premier ordinateur IAS Source: the Archives of the Institute for Advanced Study

←→ Harvard

des bus séparés relient les unités

Instructions & Données

Architecture CPU

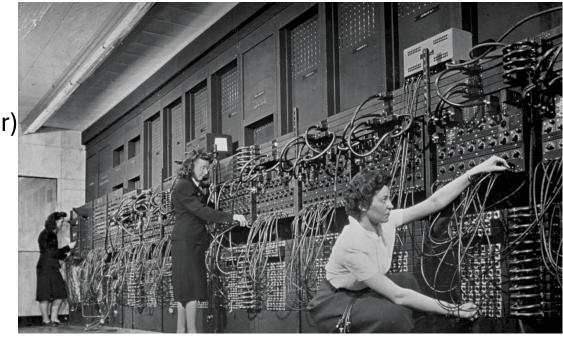
L'ordinateur ENIAC

(Electronic Numerical Integrator)

and Computer) - Février 1946:

• Tubes à vide : 17 468

Transistors: 70 000


Consommation: 160 kW

• Espace occupé : 167 m²

• Programmé avec : 6000 interrupteurs

ENIAC par John Mauchly et John Presper Eckert

• Performance: 5000 additions/s, 357 multiplications/s, 38 divisions/s

Architecture CPU

- Unité de commande (CU)
 - Décodage des instructions,
 - Séquencement/ordonnancement du fonctionnement des différentes unités,
 - Gestion des interruptions internes/externes.

Unité d'exécution (EU)

- Unité Arithmétique-et-Logique (ALU),
- Registres à usage spécifique (fonctions graphiques, calcul vectoriel,...)
- **Registres:** unités de stockage cadencés au même rythme que l'unité de commande,
 - Usage général (GPR)
 - Usage spécifique (compteur ordinal, pointeur de pile

Interfaces d'E/S

Permettant l'échange de données avec le monde extérieur.

Critères de sélection

Application

- Nombre disponible de lignes d'E/S
- Fonctionnalités intégrées (mémoire, A/D, temporisateurs)
- Système d'exploitation
- Consommation (embarqué)
- Performance du processeur (fréquence, outils disponibles)
- Prix (important en industrie

Distinguer l'arbre de la forêt

Affinités personnelles

- Familiarité avec l'architecture/famille du processeur/système
- Disponibilité d'outils logiciels/matériels de développement
- Disponibilité de codes
- Dispositifs de sécurité (protection, cybersécurité, ...)
- Disponibilité à long terme

Critères de sélection

Optimisation

• Si le problème peut résolu avec un 8-bits, il n'est pas nécessaire d'opter pour des processeurs plus puissants.

• Rover de la NASA "**Sojourner**", lancé le 4 décembre 1996 → basé sur le

microprocesseur 8-bits Intel **80C85**.

Spécificités

- Besoins en calcul de l'application
- → mieux choisir le processor approprié.

Source: Nasa

Critères de sélection

Regarder dans la bonne direction!

- Lister les interfaces matérielles nécessaires : PWM, USB, WIFI, CAN, Bluetooth
- Lister les outils logiciels requis : temps réel, F-Point, logique floue
- Choisir l'architecture : RISC, CISC
- Identifier les besoins en mémoire: (RAM et flash sont critiques)
- Tenir compte des contraintes énergétiques et budgétaires (embarqué, bas coût)
- Disponibilité des outils (plateformes)
 de développement : kits, IDE, compilateurs

RISC vs CISC

RISC: "Reduced Instruction Set Computer" → contraste avec une machine CISC (Complex Instruction Set Computer).

RISC → simplicité

- Format d'instruction fixe 32-bit instruction (variable pour RISC)
- Ensemble de registre plus important (32-bit GPR)
- Prototypage facile

Organisation RISC

- Instructions câblées au lieu de microprogrammées
- Exécution en pipeline
- Peut atteindre l'exécution d'une instruction par cycle machine

Avanatges RISC

- CI moins encombrant
- Temps de développement plus court (TTM: Time To Market))
- Dans certains cas, meilleure performance que CISC

Inconvénients RISC

- Densité de code plus faible que CISC
- Incompatibilité avec la famille Intel x86

Raspberry Pi 3

• CPU: Quadricœur 64-bit ARM Cortex A53 cadencé à 1,2 GHz

• GPU: 400MHz

Mémoire: 1GB SDRAM,

• USB ports: 4

Sortie vidéo: HDMI, composite vidéo

Réseau : Ethernet, WIFI17 GPIO, Bluetooth: 4.1

Prix: à partir de 35 € TTC (2024)

Source:

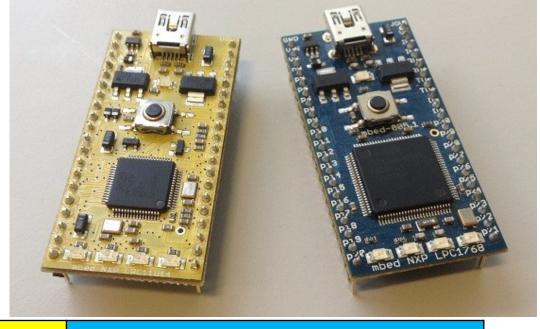
https://www.raspberrypi.com/products/raspberry-pi-3-model-b/

Raspberry Pi 4

Quad-core Cortex-A72 (ARM V8)
 64-bit quad-core processor,

 Dual-display support at resolutions up to 4K via a pair of micro-HDMI ports,

- Standard 40-pin GPIO header
- Jusqu'à 8GB de RAM,
- LAN sans fil à double bande 2.4/5.0 GHz
- Bluetooth 5.0, Gigabit Ethernet, USB 3.0,
- Mobile Industry Processor Interface (MIPI)
- Display Serial Interface (DSI)
- MIPI Camera Serial Interface (CSI)
- Prix: à partir de 40 € TTC (2024) https://www.raspberrypi.com/products/raspberry-pi-4-model-b/


Raspberry Pi 5 est déjà disponible depuis 2023.

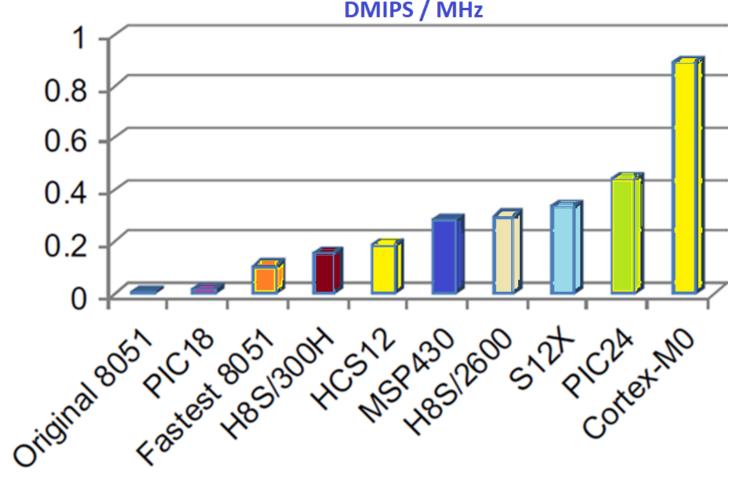
Mbed µC

Prototypage rapide:
 mbed NXP LPC11U24 (gauche)
 mbed NXP LPC1768 (droite)


Source: https://os.mbed.com/

LPC11U24	LPC1768		
Fréquence : 48 MHz	Fréquence : 96 MHz		
CPU: ARM® Cortex™-M0 Core	CPU: ARM® Cortex™-M3 Core		
FLASH: 32 Kib	FLASH: 512 Kib		
RAM: 8 Kib	RAM: 32 Kib		
Prix : à partir de 45 €	Prix : à partir de 50 €		

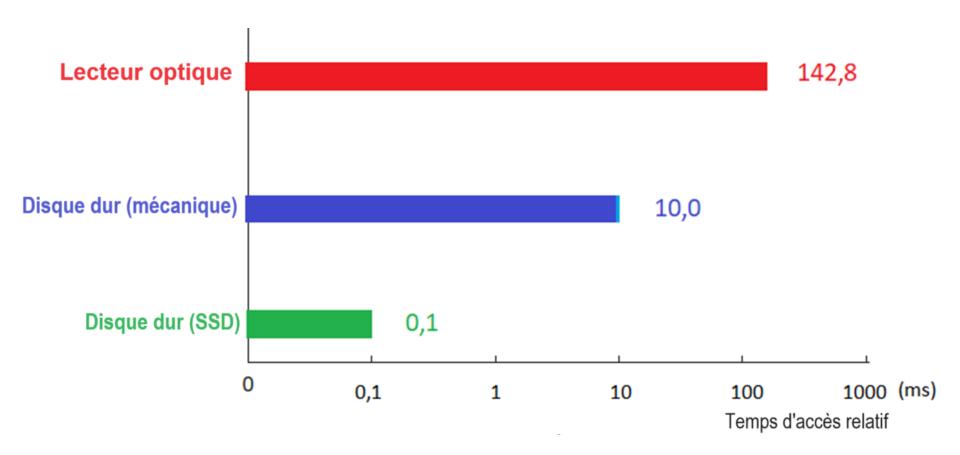
Carte microcontrôleur HCS12/S12


- MCU MC9S12D64 avec CPU 16-bits HCS12
- Horloge bus jusqu'à 25 MHz
- 112 broches, jusqu'à 89 lignes d'E/S
- Mémoire flash 64 KiB
- EEPROM 1 KiB
- RAM 4 KiB
- SPI, 2x SCI
- IIC (Inter-IC Bus)
- MLI à 8 canaux
- Convertisseur A/D16 canaux

Prix: à partir de 59,50 € TTC (2024)

Source: https://elmicro.com/en/cards12.html

Performances de certains microcontrôleurs


DMIPS (Drhystone MIPS): benchmark program mips

- Accès séquentiel vs accès Aléatoire (parallèle)
 - Cassette audio
 - CD (Compact Disk)
- Principale vs Auxiliaire
- Permanente (non volatile) vs Volatile

• Temps d'accès de différents types de disques

Mémoire permanente

Sauvegarde de données statiques

• ROM: Read Only Memory

PROM: Programmable ROM

• EPROM : Erasable PROM

Sauvegarde de données statiques/dynamiques

• EEPROM: Electrically EPROM

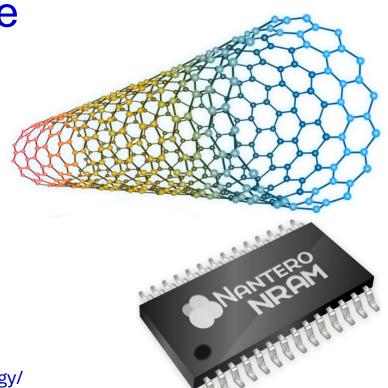
• EAPROM: Alterable

NRAM : Nanotube RAM

NRAM

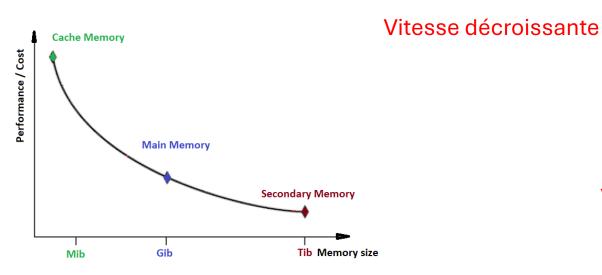
Carbon Nanotube Memory

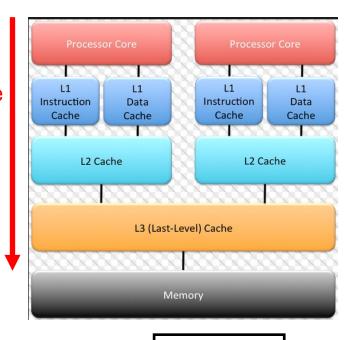
→ Fujitsu (2019)


Nouvelle génération de mémoire

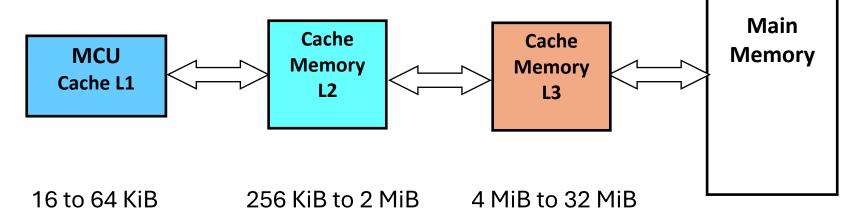
- super rapide,
- ultra-haute densité,
- Très basse consommation d'énergie.

https://www.nantero.com/technology/


- L'écriture nécessite 160x moins d'énergie par bit comparée à une mémoire Flash
- Haute résistance à l'environnement (chaleur/froid, IEM, vibration)



Mémoire dynamique


- SDRAM: Synchronous Dynamic RAM
 - Ancienne technologie → asynchrone
 - Synchronisée avec l'horloge du système (bus)
 - Meilleure performance que DRAM asynchrone
- DDR: Double Data Rate SDRAM
 - Synchrone avec le l'horloge du système (bus)
 - DDR lit les données sur les fronts montant et descendant

Hiérarchisation de la mémoire

Organisation type d'une mémoire Cache

16 GiB

Comparaison des temps de latence

Valeurs nominales*

Туре	Time			
L1 cache	0.5 ns			
L2 cache	7 ns	14 x L1		
Static RAM SRAM	10 ns	1,5 x L2	20 x L1	
Dynamic RAM	50 ns	5 x SRAM	7 x L2	100 x L1
Read Solid State Drive SSD	70 ns	1,5 x DRAM	7 x SRAM	10 x L2
Read Hard Disk Drive HDD	9 ms	128 x SSD	180 x DRAM	900 x SRAM

^{*} Peuvent varier en fonction des spécifications des fabricants ((technologie, capacité, lecture, écriture...)

E/S

Projection en mémoire

Mémoire et E/S partagent le même bus → Von Neumann

E/S isolées

• Instructions dédiées pour accéder aux lignes d'E/S dédiées \rightarrow Harvard

E/S par interruption

- Méthode de scrutation
- Méthode de vectorisation

Lignes E/S numériques

- Programmable en entrée ou en sortie
- Peuvent server de sortie MLI (commande de vitesse moteur)

Lignes E/S analogiques

- Convertisseur numérique-analogique (DAC)
- Convertisseur analogique-numérique (ADC)

E/S

• E/S numériques

LED: Light Emitting Diode

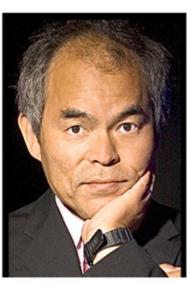
1962 : invention de la première LED rouge (spectre visible) par Nick Holonyack.

1972: invention de la LED jaune by George Craford

1976 : LED à très grand rendement (très brillante) pour la fibre optique inventée

par Thomas P. Pearsall.

1994 : invention de la LED bleue par Shuji Nakamura

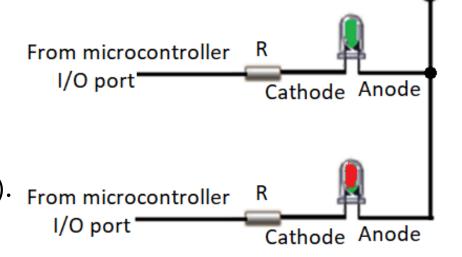

Nick Holonyak Jr.(1928-2022) Father of the LED

George Craford (1938) Yellow LED inventor

Thomas P. Pearsall Photonics pioneer

Shuji Nakamura (1954) Blue LED inventor

E/S

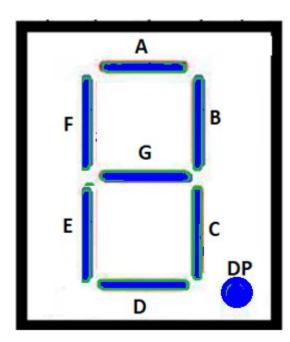

E/S numériques

LED: Light Emitting Diode

Il est plus pratique d'utiliser des LED en anode commune qu'en cathode commune.

La patte la plus longue est l'anode (+)

La patte la plus courte est la cathode (-).



En anode commune:

un "LOW" du microcontrôleur allume la LED.

- E/S numériques
- L'afficheur 7-segment selon le nombre des "segments" (LED) utilisés Pour afficher un chiffre décimal.

Deux types:

Cathode commune : toutes les cathodes sont reliées à la masse. Un "HIGH" est nécessaire pour allumer un segment donné.

Anode commune : toutes les anodes sont reliées à Vcc (alimentation). Un "LOW" est nécessaire pour allumer un segment donné.

Des résistances de protection doivent être utilisées pour limiter le courant et protéger aussi bien le microcontrôleur que l'afficheur.

E/S numériques

LCD: Liquid Crystal Display

- Inventé en 970 par James L. Fergason.
- Images en N&B seulement.
- Relativement cher

Durant les années 1980s et 1990s, les fabricants ont mis sur le marché :

Des écrans plus grands, remplaçant les écrans à

tube cathodique.

 Relativement plus accessibles (prix).

James L. Fergason (1934-2008) LCD inventor in 1970

CRT

E/S numérique

OLED: Organic Light Emitting Diode

1979 : **Steven Van Slyke** et **Ching Wan Tang** étaient les pionniers de la LED organique (OLED) chez Eastman Kodak

Steven Van Slyke

Ching Wan Tang

E/S numérique OLED : Organic LED

- Matériau organique émettant de la lumière lorsque est traverse par un courant
- Ne nécessite pas de lumière de fonds et de filtres (comme pour les LCD),
- Meilleur rendement,
- Plus facile à fabriquer et plus fine
- Peut être flexible et même enroulable.

OLED peut fournir des images de grande qualité, des couleurs brillantes, un contraste infini et un temps de réponse rapide et des angles de vue plus larges.

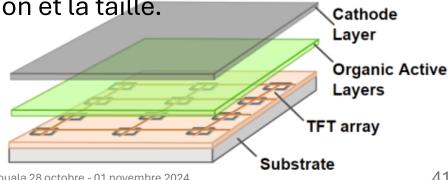
Deux types:

PMOLED: passive-matrix OLED

AMOLED: active-matrix OLED

E/S numérique

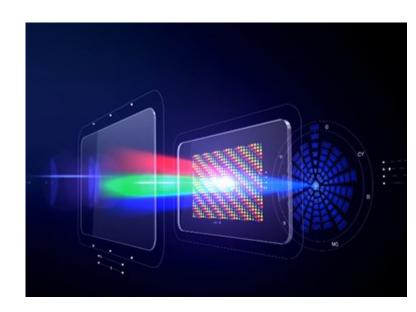
PMOLED: Passive-Matrix OI FD


- Schéma de commande simplifié. Une seule rangée (ligne) de l'afficheur est commandé à la fois.
- PMOLED : aucun condensateur, les pixels sont en réalité éteint Durant la majorité du temps, ce qui nécessite un voltage plus élevé pour qu'ils deviennent plus brillants.
- Durée de vie limitée
- Résolution et taille (moins de 7,5 cm) restreintes

AMOLED: Active-Matrix OLED, \rightarrow 2007.

• Pilotée par un transistor (TFT), intégrant un condensateur de stockage.

Aucune restriction sur la résolution et la taille.


• Samsung et LG.

E/S numérique

Q-LED: Quantum dot LED

Créée par **Sony** et révélée en 2013.

Avantages

- Longue durée de fonctionnement sans dégradation
- Couches de protection permettant :
- Images de haute qualité;
- Supporter les formats 4K, 8K, HDR;
- anti-éblouissement.

.

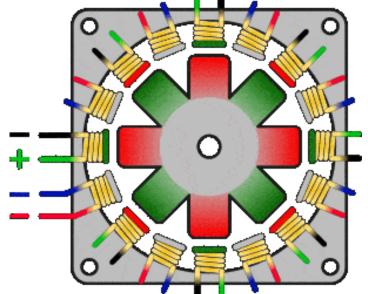
Moteurs

Moteur CC

4 types

- à aimant permanent :
- à excitation en série.
- en dérivation (Shunt)
- Compensé ou mixte
- Applications
- ventilateurs
- Convoyeurs
- Pompes
- Machine-outil
- Compresseurs
- Grues

Moteurs

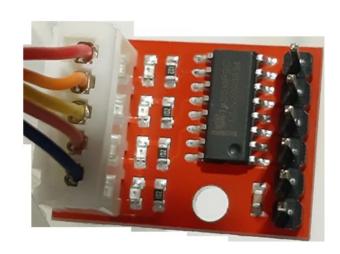

Pas-à-pas

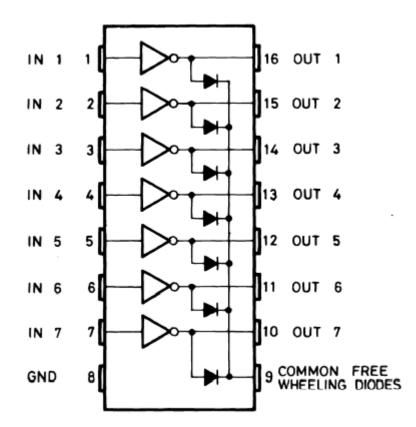
Application

- Machines à commande numérique (CNC)
- Arrêt/démarrage fréquent.
- Positionnement précis.
- Réglage du rétroviseur.

• Caméras de vidéosurveillance

Lecteurs DVD

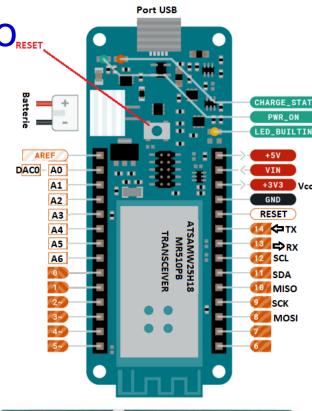

Moteurs

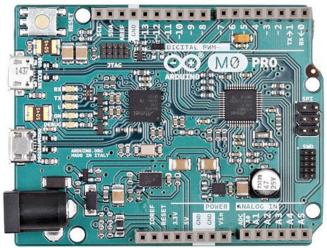

ULN 2003 7-Darlington

Il est recommandé d'utiliser un amplificateur de courant pour piloter un moteur pas-à-pas via un microcontrôleur.

Si IN = HIGH → OUT

Si IN = LOW → Aucun signal en sortie

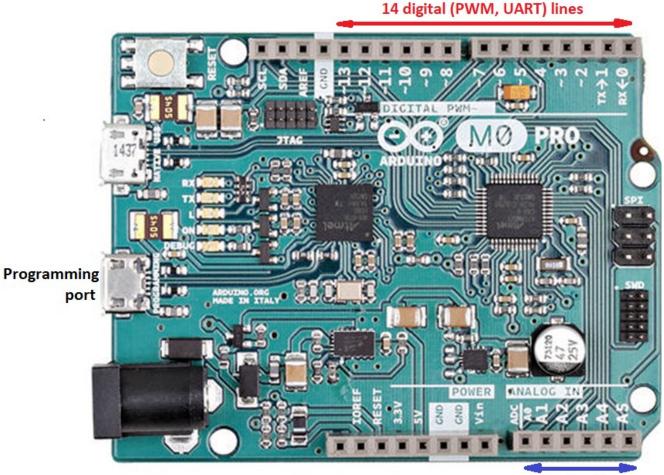



Intégration Arduino

- Projet très économique
- Développement modulaire
- utilisation simple.

Arduino IDE

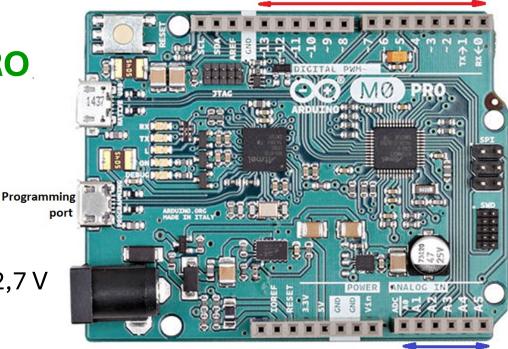
- Prise en main simplifiée
- Développent IoT,
- Peut convenir même aux non-professionnels.



E/S du M0 PRO

20 lignes d'E/S

- E/S numériques
 - 14 I/O lignes
 - Entrée OU Sortie
 - 12 canaux MLI
 - Pins 2 à 13
 - 1 **UART**
 - Pin $0 \rightarrow RX$
 - Pin 1 → Tx

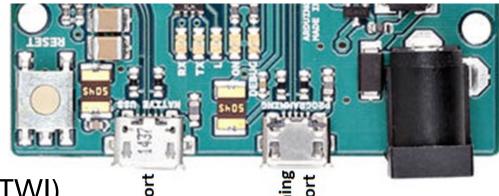


6 analog lines

14 digital (PWM, UART) lines

E/S analogiques du M0 PRO

- 6 entrées analogiques
 - A0 A5
 - Résolution ADC: 12 bits
 - AR_DEFAULT: Vref= 3,3 V.
 - AR_INTERNAL: Vref=1 V
 - AR_EXTERNAL: Vref: 3,3-0,6=2,7 V



6 analog lines

- A0: 1 sortie DAC
 - AnalogRead Résolution: 10 bits (par défaut)
 - Peut être configure en 8 ou 12 bits.
- Prix : à partir de 45 € TTC (2024)

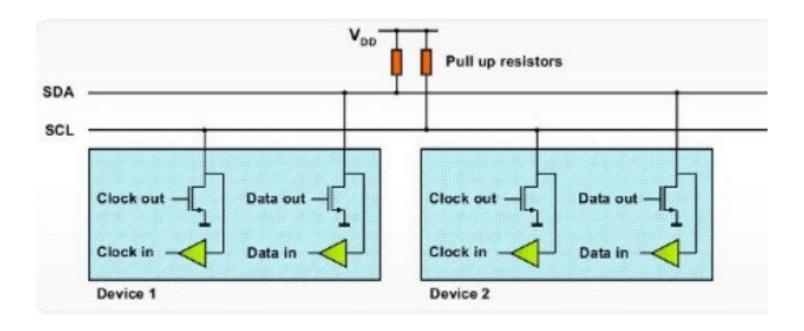
Interfaces Série du M0 PRO

- Micro-USB programming
- Micro-USB native

• I2C ou Two Wire Interface (TWI)

• SDA: Serial data line

SCL: Serial clock line


Interfaces Série du M0 PRO

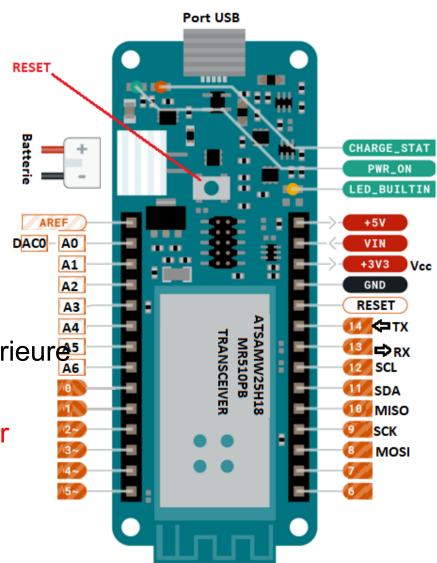
• I2C or Two-Wire Interface (TWI)

• SDA: Serial DAta line

• SCL: Serial Clock Line

Interfaces série du M0 PRO

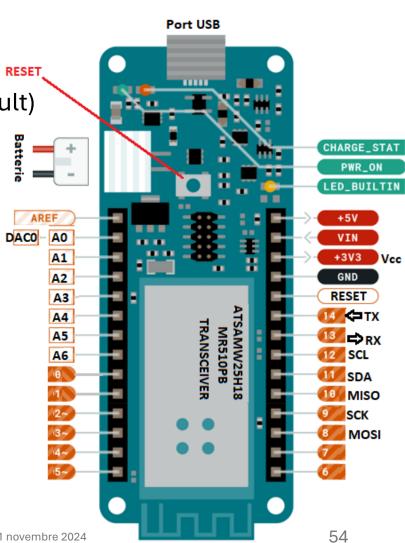
- SPI: Serial Peripheral Interface
 - Protocole de communication série
 - Communication à courte distance
 - Communication Inter microcontrôleurs
 - Environnement maître-esclave
 - MISO (Master In Slave Out)
 - MOSI (Master Out Slave In)
 - SS: Slave Select
 - SCK : Serial Clock


E/S du MKR1000

Tension d'alimentation: de 5 à 5,5 V

Tension de fonctionnement : 3,3V

Ne jamais appliquer une tension supérieur
 à 3,3V sur les E/S numériques /
 analogiques → risque d'endommager
 la carte Arduino.

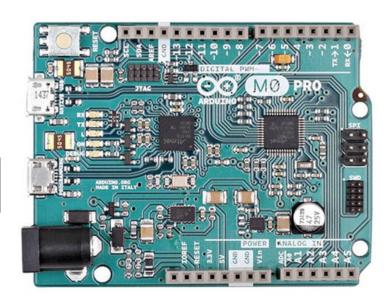


E/S du MKR1000

- 8 lignes d'E/S numériques
- 12 canaux MLI
 - Pins: 0 à 8, 10, A3, A4
- 10 sources d'interruptions externes
 - 10 (0, 1, 4, 5, 6, 7, 8, 9, A1, A2)
- 1 LED intégrée
 - Pin 6
- SPI
 - MOSI (8), MISO (10)
- 1 UART (transmit, receive TTL data)
 - Pin 13 → RX
 - Pin 14 → Tx

E/S du MKR1000

- 7 entrées analogiques
 - A0 A6
 - Résolution de l'ADC: 8/10/12 bits
 - Résolution AnalogRead: 10 bits (défault)
- A0: 1 sortie DAC
 - Résolution : 10 bits
 - MLI 12 (0 - 8, 10, A3, A4)
- Prix : à partir de 45 € TTC (2024)


Domaines d'applications

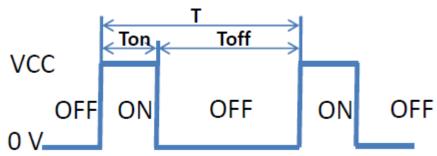
Complex Systems

Robots

IOT

Mechatronic systems

Drones, UAV


Motors

Automotive Electronics

- MLI ou Pulse Width Modulation (PWM)
- Un signal carré généré avec un taux de charge variable;
- PWM peut être utilisé pour commander :
- La Vitesse d'un moteur
- Les convertisseurs CC-CC
- La luminosité des LED ou ampoules à LED; 25% duty cycle

Aussi

- Pour générer une tension analogique directement proportionnelle au taux de charge
- Taux de charge = Ton / T

50% duty cycle

75% duty cycle

Niveaux de programmation

Bas-niveau : dépendant de la machine

- Binaire, assembleur
- Lisibilité, débogage, temps de développement

Evolué (haut-niveau)

- Interprété → débutants (Basic)
- Compilé → scientifique(Fortran), Business (Cobol)
- Pascal
- Programmation orientée objet (Delphi, Python, C++)

Langage naturel (NLP)

LC (Low Code) / NC (No Code) / Al

Margaret Hamilton avec le listing du programme de guidage d'Apollo. Source : MIT Museum

IDE: Integrated Development Environment

- Contient un éditeur de code, un compilateur et un débogueur accessibles via une interface graphique à utilisateur unique (GUI).
- La barre d'outils ressemble à celle d'un logiciel de traitement de texte.
- Carte de développement de systèmes électroniques à bas cout avec des logiciels en accès libre.

- Facilité d'utilisation avec un large spectre de cartes, de bibliothèques
- Disponibilité d'une multitude d'exemples de codes (sketches).
- Arduino se programme tout simplement avec du C/C++
- Source https://www.arduino.cc/

IDE: Integrated Development Environment

```
sketch_oct29a | Arduino IDE 2.3.3
File Edit Sketch Tools Help
                  ☐ Arduino Mega or Mega 2...
       sketch_oct29a.ino
               void setup() {
                 // put your setup code here, to run once:
           3
           4
               void loop() {
                 // put your main code here, to run repeatedly:
           8
           9
          10
```

Permet d'écrire (créer), éditer, compiler et téléverser un programme de l'ordinateur vers une carte Arduino.

Programmation de l'Arduino en C Différentes étapes

1. Initialisation

Définition de l'environnement d'exécution du programme

2. Input

Lecture (acquisition) de données du monde extérieur (périphériques d'entrée), ...)

3. Process

selon les données disponibles, effectuer les calculs requis pour obtenir un nouvel ensemble de données.

4. Sortie

Restitution des résultats obtenus précédemment (affichage, impression, ou tout autre moyen).

5. Fin

Terminer le programme. En pratique, le programme tourne en boucle infinie.

Programmation de l'Arduino en C Le langage de programmation C

Développé par **Dennis MacAlistair Ritchie** entre 1969 et 1973.

- Langage de programmation à usage général.
- Initialement utilisé pour développer le système d'exploitation Unix.
- Recommandé aux processeurs de 8 à 64 bits.

Dennis MacAlistair Ritchie (1941-2011)

Avantages

- Facile à apprendre
- Portable: indépendant du processeur → compilateurs
- Langage évolué mais relativement de « bas niveau ».
- Langage permettant d'interagir facilement avec le hardware.

Programmation de l'Arduino en C Quelques types de données en C

Type	Taille en mémoire	Plage des valeurs
Boolean	1	TRUE, FALSE
char	1	–128 à +127
unsigned ch	nar 1	0 to 255
byte	1	0 to 255
int	2	-32,768 à 32,767
unsigned in	t 2	0 to 65,535
word	2	0 to 65,535
long	4	-2,147,483,648 à 2,147,483,647
unsigned lo	ng 4	0 to 4,294,967,295
float	4	-3.4028235E+38 à 3.4028235E+38
double	4	-3.4028235E+38 à 3.4028235E+38
array	;	Une série de valeurs, référencée par un seul nom de variable.

Programmation de l'Arduino en C

La déclaration void

Permet de déclarer une fonction qui ne renvoie aucune « Valeur ».

Tous les programmes (sketches ou croquis) peuvent démarrer comme suit:

```
void setup() {
// the setup code body
}
void loop() {
// the loop code body
}
```

setup et loop n'ont aucune donnée à renvoyer.

Quelques instructions en C

Opérateurs arithmétiques

Opérateur	Signification
+ (signe plus)	Addition
- (signe moins)	Soustraction
* (astérisque)	Multiplication
/ (slash)	Division
% (pourcent)	Pourcentage
= (égal)	Affectation

Opérateurs de décision

Opérateur	Signification
>	supérieur à
>=	supérieur ou égal à
<	inférieur à
<=	inférieur ou égal à
==	Egal à
I=	Différent de

Quelques instructions en C

E/S numériques

- pinMode() : permet de configurer une ligne numérique en sortie ou en entrée.
- digitalRead():
 permet de lire une valeur binaire (HIGH ou LOW) de la ligne spécifiée.
- digitalWrite() : permet de transférer (écrire) une valeur binaire à une ligne numérique.

E/S analogiques

- analogRead() : permet de lire une valeur de la ligne d'entrée analogique spécifiée.
- analogWrite(): permet de transférer (écrire) une valeur analogique à une ligne de sortie analogique (MLI).

Quelques instructions en C Fonctions de communication Série

Serial.begin(speed):

définir le taux de Baud (Vitesse de transmission) pour la communication série.

Serial.read(): lire en série les données binaires.

Serial.print(value, format) et Serial.println(value,format)

Écrire une Valeur dans un format spécifique (option) à la sortie série. Le sufixe **In** ajoute un retour chariot.

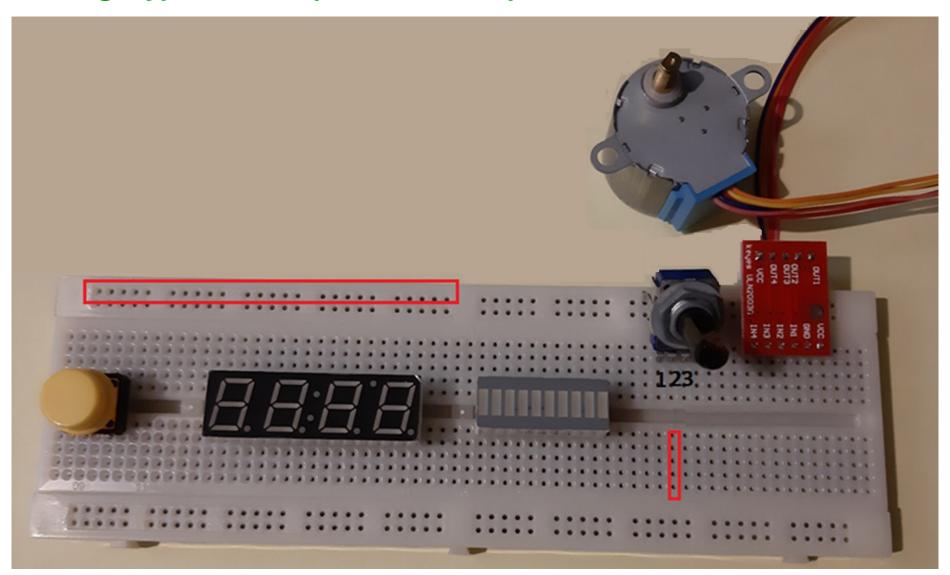
Serial.peek(): renvoie une copie du prochain octet (caractère) des données série (sans effacer le caractère du registre interne).

Serial.available() : renvoie le nombre d'octets (caractères) disponibles en lecture sur le port série.

Quelques instructions en C

L'entête « include »

Placée au début de votre programme.


Elle permet de faire référence à un fichier séparé ayant une extension .h

- → définitions et déclarations des classes.
- → réutilisation des codes déjà existants.

Exemple:

```
#include <Stepper.h> // include the Stepper motor library
```

Montage type des composants sur la platine

